

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE, NIGERIA

DEPARTMENT OF AUTOMOTIVE ENGINEERING

FIRST SEMESTER EXAMINATIONS

2020/2021 ACADEMIC SESSION

COURSE:

ATE 505 – Automobile Vehicle Dynamics & Safety

Control (3 Units)

CLASS:

500 Level Automotive Engineering

TIME ALLOWED: 3 Hours

INSTRUCTIONS: Answer Question 1 and any other 4 from Questions 2 to 7

Date: March, 2021

HOD'S SIGNATURE

Ouestion 1

i. With aid of appropriate diagrams, explain the two sets of coordinate system used in analyzing problems of Vehicle Dynamics

- ii. Identify the types of motion associated with the coordinate axes, giving their names and showing their directions in the positive sense (for both translational & rotational)
- iii. Explain the principle of manoeuvring in vehicle dynamics
- iv. Define slip angle and camber angle and indicate their positive directions
- v. Explain the source of lateral force in relation to rolling motion of a vehicle
- vi. What is the interrelation between lateral force and sideslip?
- vii. By means of a neat sketch, draw forces and moments acting on a pneumatic tyre and define each of the parameters involved
- viii. Define pneumatic trail and aligning moment and write an expression connecting them
 - ix. Define cornering stiffness and camber stiffness.
 - x. Discuss the parameters affecting cornering properties of a tyre.
- xi. Explain how a four-wheel steering system can improve low speed maneuverability and high speed cornering
- xii. Distinguish between open loop and closed loop driving systems
- xiii. What is safety control in the automobile system?
- xiv. Define steering angle. Use sketch of steering angle vs. speed to illustrate the cases of understeering, neutral steering and over-steering

Question 2

It is known that relation between lateral force and slip angle is largely derived from tests and can be expressed in graphical forms like the ones shown in the Figures 1a & 1b below.

- (a) Interpret the figures and
- (b) Explain their use in vehicle dynamics.

Question 3 Figure 2 shows the bicycle (single track) vehicle model.

Figure 2

- a) Draw the right side figure
- b) Identify the parameters involved
- c) State any three of the assumptions in the bicycle model
- d) State any three of the requirements for low speed turning

Question 4

Figure 3 shows the Ackerman condition.

Figure 3

- a) Name the variables shown. Use the kinematic (geometric) relations shown to derive the Ackerman condition
- b) Show how the Ackerman condition meets the key requirement for low speed turning
- c) Determine the turning radius for a vehicle having following dimensions and steer angle:

Wheel base= 2.62 m

Wheel track = 1.57m

Distance of CG from rear axle = 1.52 m

Steer angle of the steer angle of the inner wheel =12 deg

Question 5

Figure 4

- a) Using the sketch in Figure 4 above, explain the significance of any four key fundamental parameters used in vehicle dynamics
- b) Use sketches to distinguish between lateral (side) slip and longitudinal slip
- c) Draw a graph to show variation of tractive force with longitudinal slip

Question 6

The graphs in Figure 5 below describe the functional features of Lateral Forces in vehicle dynamics. Do the following:

- a) Label the graphs
- b) Explain the variables or parameters involved
- c) Describe the relation between the graphs
- d) State the results that can be derived from using the graphs

Figure 5

Question 7

Figure 6 below illustrates the main concepts in vehicle dynamics for deriving the equations of motion incorporating the following five parameters:

- (i) Resistance forces, (ii) Tractive effort, (iii) Vehicle acceleration, (iv) Braking effort and (v) Stopping distance
 - a) Draw the figure and label it showing these parameters
 - b) Explain the significance of each of the parameters
 - c) Explain how empirical relations can be found for any two of the parameters

Figure 7